Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans.
نویسندگان
چکیده
OBJECTIVES Although previous studies in dogs have indicated a minimal role for changes in I(K1) in the shortening of action potential duration (APD) associated with atrial fibrillation (AF), in humans, there is evidence for significant AF-induced up-regulation of this current. In this computer model study, we investigated the relative contributions of the remodeling of I(K1), L-type calcium current, and other remodeled ionic channel currents to AF-induced APD reduction in human atrium. METHODS Two computer models of electrical activity of human atrial cell were modified by incorporating experimental data of AF-induced changes in human atrial ionic channel conductance and kinetics reported by Bosch et al. (I(CaL), I(to), I(K1), and I(Na)) (AF-1) and Workman et al. (I(CaL), I(to), and I(K1)) (AF-2). The roles and relative importance of individually remodeled ion channels in the APD reduction in human atrium were evaluated by the removal and exclusive methods, in which remodeling of specific currents was omitted, or considered in isolation, in the two models. RESULTS When tested together, previously reported AF-induced changes in sarcolemmal ion currents result in marked shortening of atrial APD(90). With the AF-1 remodeled parameters, there is a 62% reduction in APD(90) for the Nygren et al. model, and a 68% reduction for the Courtemanche et al. model, which are comparable to experimental results of 60% reduction seen in humans. When tested individually, AF-1-induced changes in I(CaL), I(K1), or I(to) alone result in APD(90) reduction of 20%, 64%, and -10%, respectively, for the Nygren et al. model, and 27%, 40%, and 11.6%, respectively, for the Courtemanche et al. model. With the AF-2 remodeled parameters, there is a 47% reduction in APD(90) for the Nygren et al. model and a 49% reduction for the Courtemanche et al. model, which are also comparable to experimental results of 45% reduction. When tested individually, AF-2-induced changes in I(CaL) or I(K1) alone result in APD(90) reduction of 20% and 40%, respectively, for the Nygren et al. model, and 14% and 21%, respectively, for the Courtemanche et al. model. CONCLUSION Previously reported changes in L-type Ca(2+) current are insufficient to account for the observed reduction in atrial APD associated with persistent AF. Up-regulation of I(K1) has a greater influence on atrial APD in the human model.
منابع مشابه
The Contribution of Ionic Currents to Rate-Dependent Action Potential Duration and Pattern of Reentry in a Mathematical Model of Human Atrial Fibrillation
Persistent atrial fibrillation (PeAF) in humans is characterized by shortening of action potential duration (APD) and attenuation of APD rate-adaptation. However, the quantitative influences of particular ionic current alterations on rate-dependent APD changes, and effects on patterns of reentry in atrial tissue, have not been systematically investigated. Using mathematical models of human atri...
متن کاملIntegrative Physiology Human Atrial Action Potential and Ca Model Sinus Rhythm and Chronic Atrial Fibrillation
Methods and Results: Atria versus ventricles have lower IK1, resulting in more depolarized resting membrane potential ( 7 mV). We used higher Ito,fast density in atrium, removed Ito,slow, and included an atrial-specific IKur. INCX and INaK densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte ...
متن کاملNew manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملThe Major Role of IK1 in Mechanisms of Rotor Drift in the Atria: A Computational Study
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. This review describes the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV...
متن کاملTransgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability.
To assess the functional significance of upregulation of the cardiac current (IK1), we have produced and characterized the first transgenic (TG) mouse model of IK1 upregulation. To increase IK1 density, a pore-forming subunit of the Kir2.1 (green fluorescent protein-tagged) channel was expressed in the heart under control of the alpha-myosin heavy chain promoter. Two lines of TG animals were es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2005